Perform gene ontology analysis and visualization for DE genesets in one go.
Source:R/viz_related.R
get_go_emap_plot.Rd
Perform gene ontology analysis and visualization for DE genesets in one go.
Usage
get_go_emap_plot(
x,
org_db = org.Hs.eg.db::org.Hs.eg.db,
universe = NULL,
ont_type = "BP",
p_adj_method = "BH",
pval_cutoff = 0.05,
qval_cutoff = 0.05,
simplify = TRUE,
min_geneset_size = 10,
max_geneset_size = 500,
go_similarity_cutoff = 0.8,
show_n_terms = 30,
color_terms_by = "p.adjust"
)
Arguments
- x
an object of class 'parcutils' or 'parcutils_ir'.
- org_db
an object of the class class OrgDB, default
org.Hs.eg.db
- universe
a character vector of genes, default NULL, to be used as background genes for GO enrichment analysis. Currently supports only ENSEMBL gene id - e.g. ENSMUSG00000030787. When set to NULL all genes from x will be used as background genes.
- ont_type
a character string, default
"BP"
, denoting ontology type. Values can be one of the"BP", "MF" , "CC"
- p_adj_method
a character string, default
"BH"
, denoting a method for p-adjustment. Values can be one of the"holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
- pval_cutoff
a numeric, default
0.05
denoting p-value cutoff.- qval_cutoff
a numeric, default
0.05
denoting q-value cutoff.- min_geneset_size
a numeric, default
10
, denoting minimal size of genes annotated by ontology term for testing.- max_geneset_size
a numeric, default
500
, denoting maximal size of genes annotated by ontology term for testing.- go_similarity_cutoff
a numeric value, default
0.8
, denoting gene ontology similarity cutoff.- show_n_terms
a numeric, default
30
, denoting number of gene ontology terms to show in the plot.- color_terms_by
a character string, default
"p.adjust"
, denoting a variable to color gene ontology terms.
Examples
if (FALSE) {
count_file <- system.file("extdata","toy_counts.txt" , package = "parcutils")
count_data <- readr::read_delim(count_file, delim = "\t", show_col_types = FALSE)
sample_info <- count_data %>% colnames() %>% .[-1] %>%
tibble::tibble(samples = . , groups = rep(c("control" ,"treatment1" , "treatment2"), each = 3) )
res <- parcutils::run_deseq_analysis(counts = count_data %>% dplyr::mutate(gene_id = stringr::str_replace(gene_id, ":.*","")),
sample_info = sample_info,
column_geneid = "gene_id" ,
group_numerator = c("treatment1", "treatment2") ,
group_denominator = c("control"))
go_out <- get_go_emap_plot(res)
# display plot
go_out$go_emap_plots
# display table
go_out$go_enrichment_output %>% tibble::as_tibble()
}