Perform ASE diff analysis using edgeR.
Usage
run_ase_diff_analysis(
  x,
  test_nom,
  test_denom,
  test_factor = "condition",
  cutoff_lfc = 1,
  cutoff_pval = 0.05,
  cutoff_padj = 0.01,
  regul_based_upon = 1,
  n_thread = 1,
  ...
)Arguments
- x
 an object of class
NxtSe.- test_nom
 // TO DO
- test_denom
 // TO DO
- test_factor
 refer to the argument
test_factorinSpliceWiz::ASE_edgeR().- cutoff_lfc
 minimal threshold for log2fold change, default 1 (2 fold).
- cutoff_pval
 minimal threshold for pvalue, default 0.05. P-value threshold will be applied only when
regul_based_uponis either 1 or 3.- cutoff_padj
 minimal threshold for Padj, default 0.01. Padj threshold will be applied only when
regul_based_uponis either 2 or 3.- regul_based_upon
 one of the numeric choices 1, 2, or 3. Default 1 i.e. categorized diff. ASE by pvalue and log2fc.
if 1 ...
Up : log2fc >= cutoff_lfc & pvalue <= cutoff_pval
Down : log2fc <= (-1) * cutoff_lfc & pvalue <= cutoff_pval
Other : remaining genes
- n_thread
 an integer, default 1, denoting number of threads to use for multitasking.
- ...
 Other parameters passed to
SpliceWiz::ASE_edgeR().
Examples
se <- SpliceWiz::SpliceWiz_example_NxtSE(novelSplicing = TRUE)
SpliceWiz::colData(se)$treatment <- rep(c("A", "B"), each = 3)
SpliceWiz::colData(se)$replicate <- rep(c("P","Q","R"), 2)
run_ase_diff_analysis(x = se, test_factor = "treatment", test_nom = "A" ,test_denom = "B",  IRmode ="annotated")
#> Aug 16 11:35:53 Performing edgeR contrast for included / excluded counts separately
#> Aug 16 11:35:55 Performing edgeR contrast for included / excluded counts together
#> ┌───────────────────────────────────┐
#> │                                   │
#> │   Summary of ASE diff. analysis   │
#> │                                   │
#> └───────────────────────────────────┘
#> 
#> Total number of comparison: 1
#> Total number of ASE used for diff. analysis:
#> 
#> Diff. ASE counts by comparison...
#> 
#> A_VS_B 
#> • number of up genes   : 3.
#> • number of down genes : 0.
#> ──────────────────────────────
#> 
run_ase_diff_analysis(x = se, test_factor = "treatment", test_nom = "A" ,test_denom = "B",  IRmode ="annotated",  cutoff_lfc = 0.6, cutoff_padj = 1, regul_based_upon = 2, n_thread = 2  )
#> Aug 16 11:36:15 Performing edgeR contrast for included / excluded counts separately
#> Aug 16 11:36:17 Performing edgeR contrast for included / excluded counts together
#> Warning: UNRELIABLE VALUE: Future (‘<none>’) unexpectedly generated random numbers without specifying argument 'seed'. There is a risk that those random numbers are not statistically sound and the overall results might be invalid. To fix this, specify 'seed=TRUE'. This ensures that proper, parallel-safe random numbers are produced via the L'Ecuyer-CMRG method. To disable this check, use 'seed=NULL', or set option 'future.rng.onMisuse' to "ignore".
#> ┌───────────────────────────────────┐
#> │                                   │
#> │   Summary of ASE diff. analysis   │
#> │                                   │
#> └───────────────────────────────────┘
#> 
#> Total number of comparison: 1
#> Total number of ASE used for diff. analysis:
#> 
#> Diff. ASE counts by comparison...
#> 
#> A_VS_B 
#> • number of up genes   : 27.
#> • number of down genes : 33.
#> ──────────────────────────────
#>